Total Power in Three-Phase AC Circuits Program Note No. 3

Prepared By:
Zara Makki
Associate Engineer
07 / 31 / 2019

Softstuf Inc.
US Domestic: 1-800-818-3463
International: 1-215-922-6880
Fax: 1-609-677-8736
PO Box 40245 Philadelphia, PA 19106
www.softstuf.com

Total Power Formulas for Three-Phase AC Circuits

As written in Program Note No. 2 (Power Calculations in AC Circuits) there are two components of power: active and reactive.

$$
\begin{gathered}
\text { Active Power }=V_{R M S} I_{R M S} \cos \left(\theta_{V}-\theta_{I}\right) \\
\text { Reactive Power }=V_{R M S} I_{R M S} \sin \left(\theta_{V}-\theta_{I}\right)
\end{gathered}
$$

In a three-phase circuit the total power is the equal to the sum of the components of each phase.

$$
\begin{gathered}
\text { Total Active Power }=P_{A a}+P_{B a}+P_{C a} \\
\text { Total Reactive Power }=P_{A r}+P_{B r}+P_{C r}
\end{gathered}
$$

Where, $P_{A a}$ is the active power of phase A and, $P_{A r}$ is the reactive power of phase A. An example of how to calculate total active and reactive power using Wavewin is shown below.

Step 1: Isolate the voltage and current channels for phases A, B and C.

Step 2: Use the Software Analog Channels (SACs) to find the active and reactive power for each phase. Then, use two additional channels to total each as shown below.

Step 3: To isolate channels, highlight them and press enter. Then, read the instantaneous values for total active and reactive power.
Waveform

